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1 Overview

In this document, we provide supplementary details on various
topics discussed from the main paper. In Sec. 2, we give a short
background of the Representation theory framework that we used in
our derivation for the spherical domain Monte Carlo (MC) variance
formulation. In Sec. 3, we provide additional theoretical background
of projective 2-space that allows spectral analysis of hemispherical
signals using spherical harmonics. In Sec. 4, we study the best-
and worst-case integrands used for experiments in the main paper.
We show that both the disk function and the spherical cap function
follows the spectral decay rate as predicted by Brandolini and col-
leagues in [2001]. In Sec. 5, we provide extra experimental details
on various test integrands used to sudy the convergence rate of var-
ious sampling patterns. We conclude this document by providing
extra results.

2 Background on Representation theory

In the main paper (Sections 4 and 5, MC variance analysis in
T d/S2) we present expressions for the variance of homogenuous
sampling patterns in Euclidean space and on the (hemi-)sphere. For
both, we obtain the expressions by considering the average of the
product of Fourier/Harmonic coefficients over translations/rotations
of the sampling pattern. Leveraging a Representation Theory frame-
work, we derive closed-form expression for the average. In this
section, we briefly review some aspects of the Representation theory
used in the main paper:

Definition Given a complex inner-product space (V, 〈·, ·〉) and com-
pact group H , we say that the map ρ : H → U(V ) (with U(V ) the
group of unitary transformations on V ) is a representation if:

ρ(h0 · h) = ρ(h0) ◦ ρ(h), ∀h0, h ∈ G. (1)

Notation Given a representation ρ : H → U(V ), h ∈ H , and
v ∈ V , we will write:

h(v) ≡ ρ(h)(v). (2)

Definition Given a representation ρ : H → U(V ) and a subspace
W ⊂ V , we say that W is a sub-representation if h(w) ∈ W for
all w ∈W and all h ∈ H .

Definition Given a representation ρ : H → U(V ) we say that V
is an irreducible representation if the only sub-representations are
the trivial ones, W = {0} and W = V .

Now, we give the closed-form expressions for the average:

Proposition 2.1. Given an irreducible representation ρ : h →
U(V ), for any x, y, v, w ∈ V , we have:∫

H

〈x, h(y)〉 〈v, h(w)〉 dh =
µ(H)

dim(V )
〈x, v〉 〈y, w〉 . (3)

where 〈 , 〉 represents an inner product operator.
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Proof Fixing y, w ∈ V , let By,w : V × V → C be the map:

By,w(x, v) =

∫
h∈H
〈x, h(y)〉 〈v, h(w)〉 dh. (4)

It is not hard to show that this map is linear in the first argument,
conjugate-linear in the second, and H-equivariant. (That is, for any
h0 ∈ H we have Bv,w (h0(x), h0(y)) = Bv,w(x, y)). Thus, by
Schur’s Lemma [Serre 1977; Fulton and Harris 1991], By,w is a
scalar multiple of the inner-product on V :

By,w(x, v) = λy,w 〈x, v〉 . (5)

Noting that this satisfies By,w(x, v) = Bx,v(y, w), it follows that:

By,w(x, v) = λ 〈x, y〉 〈v, w〉 , (6)

for some constant λ ∈ C that is independent of v and w. Finally,
letting {v1, . . . , vn} be an orthonormal basis for V , we can express
the integral of the square norm of the trace of ρ(h) as:

∫
H

‖Tr (ρ(h))‖2 dh =

∫
H

∥∥∥∥∥
n∑
i=1

〈h(vi), vi〉

∥∥∥∥∥
2

dh

=

n∑
i,j=1

Bvj ,vi(vj , vi)

= dim(V ) · λ.

Since the trace is the character of the representation, it follows by
the orthogonality of characters [Serre 1977; Fulton and Harris 1991]
that

∫
H
‖Tr (ρ(h))‖2 dh = µ(H), which gives:

λ =
µ(H)

dim(V )
. (7)

Thus, we get:∫
H

〈x, h(y)〉 〈v, h(w)〉 dh =
µ(H)

dim(V )
〈x, v〉 〈y, w〉 . (8)

�
Proposition 2.2. Leveraging Schur’s Lemma in a similar manner,
it follows that if ρ1 : h → U(V1) and ρ2 : h → U(V2) are two
irreducible representations that are not isomoprhic, then for any
v1, w1 ∈ V1 and v2, w2 ∈ V2:∫

H

〈v1, h(w1)〉 〈v2, h(w2)〉 dh = 0. (9)

We use Propositions 2.1 and 2.2 in Section 5.2 of the main paper to
derive the variance closed-form expression in the spherical domain.

Euclidean domain The variance equation derived in Section 4.2
of the main paper for the Euclidean case, can also seen as a real-
ization of Propositions 2.1 and 2.2. From Eq. (E-10), of the main
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Figure 1: Comparison of the power spectra of various state of the art sampling patterns in the hemispherical domain. To perform spectral
analysis, we used spherical harmonics after mapping the hemispherical sampling pattern to the projective 2-space, as discussed in Sec. 3.

paper, we can observe that the ω-th Fourier coefficient of F can be
expressed as the dot-product:

FF (ω) = F (x) · ei2πx·ω =

∫
T d

F (x)ei2πx·ωdx . (E–10)

Here, we consider the irreducible representations V ω =
Span{e2πiω·x} under the action of the group of translations. In this
context, Proposition 2.2 implies that we can ignore cross-frequency
terms, replacing the double integral over Θ × Θ with the single
integral over Θ, and Proposition 2.1 gives the average square-norm
of the ω-th Fourier coefficient of the sampling pattern, taken over
all translational shifts.

3 MC variance analysis on Hemisphere

As discussed in the paper (Section 5.2, Variance in spectral form
in spherical domain), we can apply the mathematical procedure
developed on the sphere, in the hemispherical domain, to perform
MC variance analysis on the hemisphere using spherical harmonics.
This is possible due to the fact that the sphere is a Riemannian double-
cover of projective 2-space and all local geometric calculations in
the spherical domain are applicable on hemispherical functions if
we associate the hemisphere to the projective 2-space. Here we use
the fact that, any function on projective 2-space can be extended to
an even function on the sphere.

Projective 2-space (P2) is defined to be the set of points on the
sphere, modded out by the relation that for all x ∈ P2, x and −x
belongs to the same equivalence class. Then given a function on the
projective 2-space, G ∈ L2(P2) , it can be turned into a function on
the sphere by setting the value at the points x and−x to be the value
of G on the equivalence class {x,−x}. In particular, this means that
the space of functions on projective 2-space is the same as the space
of even functions on the sphere. Thus, rotation can be defined on
L2(P2) by treating the function as an even function on the sphere,
rotating the even function (which remains even after rotation) and
then considering the corresponding function on projective 2-space.
In that case, all the results derived in the spherical domain follow,
including the homogeneous property. The space of even functions on
the sphere is precisely the space of functions spanned by spherical
harmonic basis functions of even degree, Y lm with l even. The only
assumption here is that we restrict our analysis to functions on the
hemisphere with G(x) = G(−x) for all points on the equator.

Spectral analysis of sampling patterns We perform spectral
analysis on the hemispherical sampling patterns (in Fig. 1) by first
associating the hemispherical samples to the projective 2-space and
then computing angular power spectra using spherical harmonics.

4 Best and worst case study

In the main paper (Section 6), we discuss our best- and worst-case
of integrands for the Euclidean and the spherical domains by con-
sidering the fact that the power spectrum of an integrand defined in
T d is bounded. In this section (Sec. 4.1) we give a formal proof of
this statement. Later, in Sec. 4.2 and 4.3, we study our worst-case
function used in the Euclidean and spherical domains. We first study
the characteristic disk function, and prove that the power spectrum
(P̆F (·)) decay rate of the d-dimensional disk function is the same
as the one advocated by Brandolini and colleagues [2001] and later
focus on the spherical cap function.

4.1 Bound of the Power Spectrum

Lemma 4.1. The power spectrum Pg of the d-dimensional function
g is bounded by the square of the L1 norm of g.

Proof From Fourier transform of g:

Fg(ω) =

∫
Rd
g(x)e−i2πωxdx , (E–11)

the amplitude of the Fourier transform of g can be bounded by the
L1 norm of g:

|Fg(ω)| =
∣∣∣∣∫

Rd
g(x)e−i2πωxdx

∣∣∣∣
6
∫
Rd
|g(x)||e−i2πωx|dx

6
∫
Rd
|g(x)|dx . (E–12)

Since Pg(ω) = |Fg(ω)|2, the power spectrum of g is bounded by
the square of the L1 norm of g. �

4.2 Assymptotic Behaviour of d-dimensional disk
Power spectrum

Lemma 4.2. The radial power spectrumPd of a d-dimensional disk
is in O(ω−(d+1)).

Proof First of all, the radial Fourier transform Fd(ρ) of a d-
dimensional disk is given by:

Fd(ρ) = 2d/2Γ(d/2 + 1)
Jd/2(2πρ)

(2πρ)d/2−1
, (E–13)

with Jν(ρ) being the order-ν Bessel function [Vembu 1961]. For
ν ≥ 0, |Jν(ρ)| is in O(ρ−1/2) [Olenko 2006]. As a consequence,
|Fd(ρ)| is in O(ρ−(d+1)/2) leading to Pd(ρ) = O(ρ−(d+1)). �
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Figure 2: We illustrate the power profile (Power vs l) of a spherical cap function (in blue) for θ0 = 60 with the corresponding bound (in
orange). We show three plots of the same power spectrum (a), with different zoom-in plots, (b) and (c), to better see the upper bound and to
show that the power of the spherical cap is well bounded by the upper bound we derived in Sec. 4.4.

4.3 Spherical cap function in SH terms

In the main paper (Section 6 and 8), we consider a spherical cap
function as our worst-case integrand for a given class of functions.
We compute an analytical expression for the power spectrum of a
spherical cap function. For simplicity sake, we define spherical cap
function, Fθ0(θ), as a circularly symmetric spherical cap centered
at the north pole as a function of the colatitude θ ∈ [0, π]:

Fθ0(θ) =

{
1 if θ ≤ θ0
0 otherwise , (S–14)

where, ε < θ0 < π − ε, is a constant that controls the size of
the spherical cap, for ε > 0. Since Fθ0 is circularly symmetric,
we can consider only the zonal (m = 0) harmonic basis functions.
Hereafter, we drop the subscript θ0 from Fθ0 to denote spherical
cap function and express it as F . To obtain spectral coefficients
(SF (l, 0)) of the spherical cap function, we simply take its inner
product—denoted by 〈·, ·〉—with the zonal components of the spher-
ical harmonics:

SF (l, 0) = 〈Fθ0(θ), Yl(θ, φ)〉 (S–15)

=

∫ π

θ=0

∫ 2π

φ=0

Fθ0(θ)Yl(θ, φ) sin θdφdθ (S–16)

=

∫ θ0

θ=0

∫ 2π

φ=0

Yl(θ, φ) sin θdφdθ (S–17)

=
√

2l + 1

∫ θ0

θ=0

∫ 2π

φ=0

P 0
l (θ, φ) sin θdφdθ (S–18)

=
√

2l + 1

∫ θ0

θ=0

∫ 2π

φ=0

P 0
l (cos θ) sin θdφdθ (S–19)

=
√

2l + 1

∫ θ0

θ=0

(∫ 2π

φ=0

dφ

)
P 0
l (cos θ) sin θdθ

(S–20)

=
√

2l + 1

∫ θ0

θ=0

2πP 0
l (cos θ) sin θdθ (S–21)

= 2π
√

2l + 1

∫ θ0

θ=0

P 0
l (cos θ) sin θdθ . (S–22)

Legendre polynomials satisfy:

(2l + 1)P 0
l (x) =

d

dx

[
P 0
l+1(x)− P 0

l−1(x)
]
. (S–23)

Substituting Eq. (S–23) in Eq. (S–22), we get:

SF (l, 0) = 2π

(
P 0
l−1(cos(θ0)− P 0

l+1(cos θ0)√
2l + 1

)
, (S–24)

which is the expression for the spherical cap harmonic coefficients
SF (l, 0) in terms of l and θ0. As shown in the paper, the variance
in numerical integration for MC integration is directly related to the
||SF (l, 0)||2 of the integrand. Here, our integrand is a spherical cap
function and the corresponding ||SF (l, 0)||2 is given by:

||SF (l, 0)||2 = 4π2

(
|P 0
l−1(cos(θ0)− P 0

l+1(cos θ0)|2

2l + 1

)
,

(S–25)
We use Eq. (S–25) in the angular power spectrum definition

(given in the main paper, Section 5.2) to numerically compute the
bounds on the associated variance of the spherical cap for various
state-of-the-art sampling patterns, as shown in Fig. 6 of the main
paper. We would like to set an upper bound on ||SF (l, 0)||2 given in
Eq. (S–25). This expression contains the shifted copies (with respect
to l) of the associated Legendre Polynomial Pl(x) :=P 0

l (x). We
can first upper bound the term |Pl−1(cos θ0)− Pl+1(cos θ0)|. Sev-
eral sharp estimations can be found in the literature for the Legendre
polynomial Pl(x). A classical result for x ∈ ]−1, 1[ and l ∈ N,
is the improved version of Bernstein’s inequality, [Lohöfer 1998;
Lorch 1983], given by:

|Pl(x)| <

√
2

π(l + 1/2))

1

(1− x2)
1
4

. (S–26)

For x = cos θ0, this inequality becomes:

|Pl(cos θ0)| <

√
2

π(l + 1/2))

1√
sin θ0

=
2√

(2l + 1)π sin θ0
.

(S–27)
We treat l = 0 as a special case. For l > 0, using the above

inequality in Eq. (S–27) we can derive:

|Pl−1(cos θ0)| < 2√
(2l − 1)π sin θ0

, (S–28)

and,

|Pl+1(cos θ0)| < 2√
(2l + 3)π sin θ0

<
2√

(2l − 1)π sin θ0
,

(S–29)
without any loss of generality. From triangular inequality, we get:

|Pl−1(cos θ0)− Pl+1(cos θ0)| < |Pl−1(cos θ0)|+ |Pl+1(cos θ0)| .
(S–30)

Using Eq. (S–28) and Eq. (S–29) in the above expression, gives us:

|Pl−1(cos θ0)− Pl+1(cos θ0)| < 4√
(2l − 1)π sin θ0

. (S–31)



For l > 0, both left and right hand side of Eq. (S–31) are positive.
Therefore, squaring followed by a division with 2l + 1 ≥ 1 on both
sides, would not affect the inequality:

|Pl−1(cos θ0)− Pl+1(cos θ0)|2

2l + 1
<

16

(2l + 1)(2l − 1)π sin θ0
.

(S–32)
Plugging this in Eq. (S–25), gives us the upper bound on the power
spectrum of the spherical cap function for any θ0 and l > 0, which
can be written as:

||SF (l, 0)||2 < 64π

sin θ0

(
1

(2l + 1)(2l − 1)

)
. (S–33)

For l = 0: Associated Legendre polynomials have a property
according to which P−1(x) = P0(x), that gives:

|Pl−1(cos θ0)| = |P−1(cos θ0)| = |P0(cos θ0)| < 2√
π sin θ0

,

(S–34)

|Pl+1(cos θ0)| = |P1(cos θ0)| < 2√
3π sin θ0

<
2√

π sin θ0
,

(S–35)

|P0(cos θ0)− P1(cos θ0)| < 4√
π sin θ0

, (S–36)

|P0(cos θ0)− P1(cos θ0)|2 < 16

π sin θ0
, (S–37)

using the above inequality in Eq. (S–25), for l = 0, gives us the
upper bound on:

||SF (0, 0)||2 < 64π

sin θ0
. (S–38)

The inequality in Eq. (S–33) does not gaurantee a (very) tight bound
on the power of the spherical cap coefficients. However, for our
analysis we found that this bound can still be used to conjecture the
rate of convergence for the worst-case error in integration.

4.4 Spherical cap power spectrum

To study the worst-case, we are looking for a function with squared-
norm zonal spectral coefficients, ||SF (l, 0)||2, exhibiting a decay
rate of order O(l−2), as derived by Brandolini in [2001]. We have
shown in the previous subsection 4.3, that a spherical cap function
has this behaviour (Eq. (S–33)). The corresponding angular power
spectrum decay rate can be obtained using Eq. (S–33) in the defini-
tion of the angular power spectrum. The resulting decary rate of the
angular power spectrum for a spherical cap is given by:

P̆F (l) <
C0

(2l + 1)2(2l − 1)
, (S–39)

where C0 = 64π/(sin θ0). In Fig. 2, we show an illustration
of this upper bound on a spherical cap function of size θ0 = 60.
We can derive a correspoding worst-case variance convergence rate
using Eq. (S–39) given by:

Var (IN ) <
µ(S2)

2
C0

N

∞∑
l=0

〈
P̆S(l)

〉
(2l + 1)(2l − 1)

. (S–40)

This variance bound can be used to study different shapes of the
sampling power spectra (P̆S(l)) to derive their convergence rate with
respect to the number of samples N .

5 Experimentation details

In the Experiments and Results (Section 8) of the main paper, we
study the worst-case variance in integration for the given class of
functions in the Euclidean and the spherical domain. We later study
the behaviour of a Gaussian function and a spherical harmonic basis
function. Below we provide details for each of the integrands:

Gaussian in T 2 We consider a Gaussian function defined by:

F (x, y) = 8e−32π(x2+y2) ,

with the corresponding spectral profile given by:

P̆F (ρ) =
1

16
e

−π(ρ2)
16 .

This integrand is not bandwidth-limited but smooth enough to have
an exponential decay rate for its corresponding power spectral pro-
file.

Disk in T 2 For our worst-case in the given class of functions, we
consider a circular disk in the Euclidean space, which has a spectral
profile decay rate of the order proposed by Brandolini et al. [2001].
The disk is defined by:

F (x, y) =

{
4/
√
π, if

√
x2 + y2 < 1/4

0, otherwise.

To fit the domain of integration, the disk is translated to the center
of the domain of integration (1/2, 1/2). Its spectral profile is given
by:

P̆F (ρ) =
J1(π

√
ρ2/2)2

π(ρ2)
,

where J1 is a 1st order Bessel function.

Spherical harmonic basis function (Y ml ) in S2 In the spherical
domain, we chose a SH basis function Y ml with (l = 4,m = 0),
which is a band limited function. Y 4

0 is a smooth function with
compact support and can be considered as a best-case for the class
of functions discussed in the paper. The power spectral profile of
any SH basis function, Y lm, is given by P̆F (l) = µ(S2)/(2l + 1),
as ||Y ml ||2 = µ(S2).

HDR image In (Figure 4), we present integration results of HDR
image. We want this case of integration as an illustration of a difficult
but realistic case of integration. To ensure that the image is not too
simple to integrate, we use a box filter, leading to high frequency
content in the reconstructed image.

Extra results At the end of this document, we include some re-
sults, namely, rendering Cornell box scene with ambient occlusion,
with reference image shown at the end of the document with the
HDR image used to study the sampling pattern convergence be-
haviour for the Euclidean case.
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Figure 3: Cornell box rendered with ambient occlusion. Mean squared error (MSE) values are computed w.r.t a reference image (shown on the
next page, Fig. 4) for each sampling pattern (mentioned in the left most column) for a given number of shading rays (top most row) used to
sample directions on the visible hemisphere at each hitpoint in the scene.



Figure 4: Top: Original HDR image used in the paper, courtesy sIBL archive. Bottom: Cornell box reference image synthesized using 32k
hemispherical jittered samples generated via Healpix data structure. In the paper we show this image as an inset in the comparison graphs.
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